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Multiple Burn Fuel-Optimal Orbit Transfers:
Numerical Trajectory Computation and

Neighboring Optimal Feedback Guidance

C.-H. Chuang, Troy D. Goodson, and Laura A. Ledsinger

School of Aerospace Engineering

Georgia Institute of Technology, Atlanta, Georgia 30332

ABSTRACT

This report describes current work in the numerical computation of multiple bum,

fuel-optimal orbit transfers and presents an analysis of the second variation for extremal

multiple bum orbital transfers as well as a discussion of a guidance scheme which may be

implemented for such transfers. The discussion of numerical computation focuses on the

use of multivariate interpolation to aid the computation in the numerical optimization.

The second variation analysis includes the development of the conditions for the

examination of both fixed and free final time transfers. Evaluations for fixed final time

are presented for extremal one, two, and three bum solutions of the first variation. The

free final time problem is considered for an extremal two bum solution. In addition,

corresponding changes of the second variation formulation over thrust arcs and coast arcs

are included. The guidance scheme discussed is an implicit scheme which implements a

neighboring optimal feedback guidance strategy to calculate both thrust direction and

thrust on-off times.

I. INTRODUCTION

The necessary conditions which result from analyzing the first variation of a cost

functional are widely used. These are commonly referred to as the Euier-Lagrange

equations. Many problems require additional considerations, for example, the problem

considered herein, fuel-optimal orbit transfer, requires consideration of Pontryagin's

Maximum Principle.



Many researchers have used the first variation to compute extremal solutions to

the fuel-optimal orbit transfer problem. Some have used them to apply two-point

boundary value problem solvers to optimization problems, forming indirect methods. 12,3

Others have used a partial set of the conditions to form hybrid indirect/direct methods

where certain highly sensitive parameters are optimized directly.4, s However, to the

knowledge of rite authors, few, if any, have made use of the conditions related to the

second variation of the cost functional. These provide sufficient conditions which, when

met, declare an extremal solution as a local, weak optimal solution.

Once the second variation of the cost functional is verified so that it is known

whether the sufficient conditions are met, the information obtained can then be used to

implement a guidance scheme. Guidance is defined to be the determination of a way to

follow an optimal trajectory when presented with obstacles such as environmental

disturbances or uncertainties in navigation data. Two different types of guidance

schemes exist: implicit and explicit. Implicit guidance systems are characterized by the

fact that the vehicle's motion must be precomputed on the ground and then compared to

the actual motion. The equations which need to be solved are based upon the difference

between these measured and precomputed values. The solutions to'these equations are

used in the vehicle's steering and velocity control. Explicit guidance systems are

generalized by the fact that the vehicle's equations of motion are modeled and solved for

by on-board computers during its motion. The solutions for the equations are solved

continuously and are used to determine the difference between the vehicle's current

motion and its destination. Commands are then generated to alleviate the anticipated

elTOr.

Existing guidance schemes have been presented in various papers. An iterative

guidance scheme which is implemented using a linear tangent steering law is presented

by Smith. 6 This guidance scheme has been used for the Saturn V and is in currently used

by the Space Shuttle, the Atlas-Centaur, and the Titan-Centaur. In a paper by Lu 7, a

general nonlinear guidance law is developed using two different strategies. One strategy
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uses optimal control theory to generate a new optimal trajectory onboard from the start,

while the othe_ uses flight-path-restoring-guidance to bring the trajectory back to the

nominal. A guidance scheme that is developed using inverse methods for unthrusted, lift-

modulated vehicles along an optimal space curve is presented by Hough. s Linearized

guidance laws applicable to many different types of space missions are presented by

Tempelman.9 These guidance laws are based on fixed and free final time arrivals.

Naidu lo presents a guidance scheme applicable to aeroassisted orb_.tal transfers. This

scheme is developed by implementing neighboring optimal guidance and linear quadratic

regulator theory. Some interesting techniques for making the neighboring optimal

guidance converge about the nominal path are introduced in a paper by Powers. 11

The guidance scheme proposed in this report is an implicit one which implements

neighboring optimal feedback guidance. An implicit guidance system was chosen due to

the fact that that type of guidance system handles disturbances well. 1° The neighboring

optimal feedback guidance was chosen because it inherently uses the nominal solutions.

Also, it has the advantage of being a feedback system, as a opposed to open-loop

guidance.

In this scheme, the initial orbit exit point is assumed to be perturbed from the

nominal point but the boundary condition, specifying the final orbit, is assumed

unchanged. The goal is to use the controller to bring the trajectory back to the nominal

path at some point by using minimal fuel.

IX. FIRST VARIATION CONSIDERATIONS

Within this report results are restricted to the planar case, no plane changes are

considered at this stage of development. The solutions examined in this report satisfy the

conditions related to the first variation. In the next section, the conditions sufficient for

declaring a minimizing solution will be checked for these transfers. Some of these

transfers are multi-burn transfers and in order to simplify initial analysis new nominal



solutionshavebeenconstructedfromthesewhicharesingle-bum transfers, i.e. the thrust

is kept on for all time between the initial orbit exit point and the final orbit entry point.

Only that part of the original trajectory which is contained in the last bum is taken

to constitute the new extremal solution. This new extremal solution has a fixed initial

point and fixed transfer time but the final point is only constrained in that it must lie on

the final orbit.

lI.1. CONDITIONS FROM TtE FIRST VARIATION

The first order conditions for this problem have been stated many times 12and will

be given here only briefly. The optimization problem consists of a cost functional (Eq.

[1]), state dynamics (Eqs. [2-4]), fixed initial point conditions (Eq. [5]), and boundary

conditions on the terminal point (Eq. [6]); each of these is expressed below.

J = -m(t/) (1)

= v (2)

T #r= _e T -m _ (3)

T

gol,p (4)

r(to)=ro, v(to)= Vo, re(to)=mo (5)

xv_ irhl_,. = (.:-,/r)x-(r'v)_/-I_. |
V'. L(:-_/..)y-(r'.)vJ [_e.J

(6)

where r=[x y]T is the radius vector, v=[u v] T is its time derivative, er is the thrust

direction, a unit vector, T is thrust magnitude (limited between zero and some maximum
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valueTmax), It is the gravitational constant, go is the gravitational acceleration at sea-

level, lg, is the specific impulse of the motor. The quantity golsp is often referred to as

the exit velocity of the motor. The Euler Lagrange conditions are then

(7)

(8)

(9)

(10)

where _r.--[_ x ky] T and _,v:=[_ku _v] T. The natural boundary conditions are

,_.(tf )" v3v + v4(v2-1t/r + ltx2/r') + Vs(l_y/r' -uv)L,, (11)

(12)

_,,(,,)=-_,y-_,y_+_,(2y_-xv)L, (13)

_.,(tf) = v3x+ v4(2xv-uy)- vsxul,., ' (14)

_,,(tl) =-1 (15)

The conditions resulting from applying Pontryagin's Minimum Principle are



where

H s <0, T=T,_

Hs>O, T=0 (16)

(17)

Note that when the derivatives of Hs are zero, singular arc solutions may exist. This has

been checked numerically. 12

Finally, the free final time problem will also be considered here. For these

extremal solutions the final, or transfer, time is selected such that the transversality

condition is satisfied, i.e. the Hamiltonian is zero at t=tf.

"(',)= =o (18)

In a previous paper 12this problem was given as a maximization problem. To conform to

the convention used for the second variation 13, it is now stated as a minimization

problem. If an extremal solution to the maximization problem is given as state time

history x(0, Lagrange-multiplier time history X(t), and Lagrange multipliers v, associated

with boundary conditions, then the extremal solution of the above minimization problem

is x(t), (-1)*_,(t), and (-1)*v.

Additionally, it makes more sense in the guidance problem to consider the control

as the angle/7, rather than individual components of a unit vector. This simplifies

analysis because the control is now a scalar. Equation [7] must now be restated as

tan(O) =--_-[ (19)
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IL2. EXTREMAL SOLUTIONS

All quantities associated with the solutions presented here have been

nondimensionalized so that _=1 and will be presented here in that form. The relations

used to nondimensionalize are given below.

r ___ v
m m .,,-']77'77.* (20-21)r*

m
- n tt = t[ (22-23)

m,_. ,/(,,)'/,,

. r/,: (#:.,)= (24-25)

where r* and m * are indicated in the tables for each case of the extremal solutions.

Each of the transfers given below have both the initial orbit exit point and fial

orbit entry points free. However, for the guidance problem it makes more physical sense

to consider the initial orbit exit point as fixed and equal to the optimal choice, for it

cannot be updated once the transfer has begun.

The last bum of any multi-bum transfer below may also be taken as a complete

transfer unto itself. The initial point can be chosen as the one at the very first instant (or

shortly thereafter) of thrusting for the last bum. The final orbit exit point must remain

unchanged. Obviously, for these choices the natural boundary conditions for final orbit

entry point are still satisfied. This new transfer can then be considered as a new extremal

solution, though to an orbit transfer problem with a different initial orbit.

Figure 1 shows a one bum ascent extremal solution. This trajectory is a transfer

leaving an orbit with a semimajor axis a=1.069, eccentricity e=0.02633, and argument of

perigee co=--50 °. The transfer ends at a nearby orbit with a=1.038 and e=0. Other

pertinent transfer data are given in Table I. This transfer was produced by shortening the

time of a two-bum transfer until the coast arc between them vanished. This transfer is



thereforebothaminimummassandminimumtimeextremalsolutionbecausemassand

timehaveanaffmerelationshipin theone-bumcase.

Figure2 displaysatwo-bumtransfer,in factadescendingtransfer,from anorbit

withelementsa=3.847, e=0.02378 to a f'mal orbit with elements a=l.5, e=0.3333. The

apses of the terminal orbits are aligned and lie on the 'X' axis of the figure. The initial

mass is 1.608 and the final mass is 1.1547. Other pertinent transfer data are given in

Table II. This transfer has the transversality condition converged, therefore it is a

candidate fuel-optimal free f'mal time solution. By the same right, it can also be

considered a candidate optimal solution for the fixed final time problem.

Figure 1:

• -0.4

-1.2

-0.2

Final Orbit

Initial Orbit

Thrust Arc

0 0.2 0.4 0,6 0.8 1 1.2

X

One-Burn Extremal with Fixed Final Time.



go/m =

T=

rCr=

Table I.

0.3861 04= 1.038 t_= n/a at= 1.069

0.03 ei= 0.000 tt= 1.553 e/= 0.02633

6378 km m_= 14 Mg

Parameters of the Transfer Shown in Figure 1.

tq=

mr=

Y
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Figure 2: Two-Burn Extremal Orbit Transfer Solution with Free Final Time.

go/m = 1.313 ai = 3.847 _= 0 °

T= 0.03 ei= 0.02378 _f= 19.05

rot= 6878/on m_r= 200 kg

Table H Parameters of Transfer in Figure 2.

at= 1.5 ay-=0 o

q= 0.3333 m/= 1.608

A three-bum transfer is shown in Figure 3. Since this transfer is between orbits of

increasing semimajor axis, it will be referred to as an ascending transfer. The initial orbit



has elements a=2.239, e=0.1160, and co=-85.94 °. The elements of the final orbit are a=7,

e=0.7332, and w=114.6 °. Other pertinent transfer data are given in Table HI.

0
l
!

l I

-6 -4 -2 0 2 4 8 8

X

Figure 3: Three-Burn Extremal Orbit Transfer with Fixed Final Time.

gO]517 -- 0.3898 _= 2.239

0.01386 _= 0.1160

6378km mR= 14Mg

tq= -85.94 ° at= 7.000 a_

tf= 85.00 e/= 0.7332 mf=

Table HI. Parameters of the transfer shown in Figure 3.

114.6 °

0.6056
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/ll. CHECKING THE SECOND VARIATION

Extensive derivation of the conditions for the second variation of the cost

functional has already been detailed in Ref [13]. Equations given in this section are the

results of applying this work to our problem. .:

Considering the second variation of the augmented cost functional, J, a new

optimal control problem can be stated. In this new problem, the state is &, the control

&t, and the Lagrange-multipliers are 8L and dr.. Thus the new cost function is

,_.7=½[ax"(,_,=+(¢ _.)_,)&L,,+!'_['_;2,.8."'FH_'ILH=H. J[8.]'_'H''raxl (26)

subject to

8_ = L & + f, 8u (27)

ax(to)=,SXo (28)

where x=[r a"v a m] T and u=0.

In general, neighboring optimal feedback guidance allows the designer to consider

changes in final boundary conditions. We consider no such changes, assuming that the

destination orbit was accurately planned well in advance. Formulation will be made

below for both the fixed and free final time cases.

Evaluating the terms in Eq. [26-28], for orbital transfer, the partial derivatives for

the dynamics and for the Hamiltonian are:

flt "-

0 0 1 0 0

0 0 0 1 0

(/2) 3#X 2 3/txy T7- 7 r' o o --cos(O)m

3/_XYr5 _(r._bt) 3/_y2r5 0 0 -Tsin(0)m

0 0 0 0 0

(29)
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fo =

0

0

--_ an( o)

-rcos(O)
m

0

(30)

Hilt

:-3(3x,,+_a)+_5(x._,)x")
-"L ,' :)

-.L : + : )
0

(-3(_..y+ A.x)+ 15(_.,tr)xy)

-"t : " )
(-3(32,y+2,x) 15(_X,r)Y ')

-"L : '+ : )
0

0 0

0 0

0 0 0

0 0 0

0 0 0

0 0 0

o o 2_,,12.

(31)

H. =_lSl,I (32)

Hox=0 (33)

The fixed and free final time problems have the following equations in common:

8_ = A(t)Sx - B(t)o'L (34)

where

o_. = -C(t)Sx- AT (t)3%

A(t)=f, -'-f.Hu.H_

(35)

(36)

= f,H=,f. (37)B(t) -, a"

C(t) H_ -'= - H_H.,,H_ (38)

12



For a multiple-bum solution, one finds that Hoo becomes zero during coast arcs.

This makes it impossible to solve for the change in control, 80. However, since the thrust

is off during a coast arc, it physically makes no difference what choice is made for the

control. Therefore, 80 may be chosen as zero and simpler expressions forA(0, B(t), and

C(t) can be written as

A(t)=f_ (39)

B(t)=0 (40)

C(t)= H,_ (41)

Using the sweepback method for nonlinear terminal constraints, as is the case for this

development, the form for 8_, and 8V are assumed as

o_(t) = P(t)Sx(t) + S(t)dv (42)

8V = Sr(t)Sx(t) + V(t)dv (43)

which allows the solution for dv to be written as

dv = V-t (t,)[ 8_ - Sr (t o)8x(t,)] (44)

As mentioned above, 8v--O will be considered here. The boundary condition equations

are given by:

P(tf) = [_,_ + (vtw,),L,, (48)

13



t Ts( ,}=Iv,L, (49)

v(t,)-o

where in the development for the orbital transfer these am:

(so)

"a b

b c

P(tf)-- d f

e g

0 0

d e 0"

f g 0

h i 0

i j o
0 0 0

where

I

a=V_
'x(t,) 3x3(t,),2x(")l+ [Y-_ 3m2(t_! y(''}]-_--_+ R+ J ++I]R_-

b = V_U R_ "_[ R 3 R: .I

C=V_-R' R' J V_/1[R' -- R' J

d=-v+vCt,)
_=,,,-,,,u(t,)+2,,,,,(t,)
f=_Vi- V2V(t,) + 2 V,U(tf)

g=-,,_,,Ct,)
h =2v,yO,)
i -" -v,x(t,)- v2Y(t,)

j =2v, xCtf)

(51)

(52a)

(52b)

(52c)

(52d)

(52e)

(520

(52g)

(52h)

(520

(529

14



S(tt) =

v(t,)

-u(t,)

-y(t,)

x(t,)

0

v2tt _ _t +
f/-_" R 3

x(tf)y(t,)
R' - u(t,)v(tt)

-Y(tr)v(tt)

2x(tf)v(t,)- u(t,)y(tt)

x(t')y(t')-utt _vtt
R 3 k t! _ tl

R 3

2y(t,)u(t,)- x(tr)v(t,)

-x(t,)u(t,)

0 0

(53)

Following from the assumptions expressed as Eqs. [46-47], the following nonlinear

equations for P, S, and V must be integrated backwards. The results will be used to

check the sufficient conditions governing a minimizing solution.

I) = -PA - ATp + PBP- C (54)

S =-(AT-pB) S (55)

_r = STBS (56)

TO satisfy the sufficient conditions, Hoo, P, S, and V must be such that

convexity condition: H,o(t ) > 0 for to < t _<tf (57)

normality condition: V-l(t) exists for t, _<t < tf (58)

conjugate point condition: P(t)- S(t)V-l(t)sT(t) finite for t. < t < tf (59)

The convexity condition is satisfied for any transfer satisfying the choice of

control specified by the Euler-Lagrange equations. This can be seen by noting that

Eq.[32] is positive definite, irrespective of the time history for the Lagrange multipliers.

15



Ill, l, NUMERICAL RESULTS FOR FIXED FINAL TIME

The results discussed in this section were obtained for nominal solutions with

fixed transfer time. The eigenvalues of the V(t) matrix are plotted in Figure 4 for the 3-

bum extremal solution. Note that V(t) is not negative definite, one of the eigenvalues is

zero for all time and the other two eigenvalues are positive. Therefore, the normality

condition is violated. Furthermore, the conjugate point condition cannot be checked. It

must be concluded that the 3-bum extremal does not satisfy the sufficient conditions and

cannot be considered an optimal solution for fixed final time. Figure 5 shows the

eigenvalues of V(t) over the one-bum extremal constructed from this solution in the

manner described earlier. The same conclusions must be made for this transfer.

Figure 4:

--o-_. I I'1 Eigenvalues of V I
7"3

4 ............i.......................................":,............i............i............il
........................ ._............ .! ......... " ........... ).............

3 :::::::::-_::::::::::::::::-:......._............_.............).............)............._............._ 0.04

.-.ii, ....... _:-----"-............ "-' ..............._..--,.,-.........: 0.03........... : I i I l : :

2- ' .................-.-_ _-............+............) .............i.............).............i_ .........i
" ii ' " : 1 /

...i.I- _ : ' = =--., J O.02............ _............ .-............. _ ........... -_............ .)............. -i............. _............

: i I i ! i _ i il i
1- ............"'i't "i............"l............1l..................._ : .............i'.............;!

............_..t.........._.............+.............i.............)........ -t............i..........._0.01
=.[ • : i i i

0 ........... :__"___.__"_''"'_i""_ != '......i 0

i _ i I I l1 .... i .... i ......................... 001- ,,,,i,,,,l,,,,i,,,)l,,,,l,,,,i,,,,l,,,,l •

10 20 30 40 50 60 70 80 90

time (nondimensional)

Plot of Eigenvalues of V(t) for Three Burn Extremal.
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Figure 5:

I Eigenvalues of V / ---e--Zs

===================================================..... ::::::: :::::i!0.00025 "

1.s,:::::::........................._ =======================================================0.0002
: .................__._......_................i..............J0.00015

" ........__iZZi[iZZZ[j o.ooo_"
o.5................._-...i..._ .........j................j

.................__.-_ .................is lo-
...............

I I I .... i .... i ..... 5 10 s-0.5 _ _ _ _ I I I I I _ _ _ I .... I .... I .... -
80 81 82 83 84 85 86

time (nondimensional)

Plot of Eigenvalues of V(t) for Last Burn of Three-Burn Extremal.

The eigenvalues of V(t) for the single-bum transfer are shown m Figure 6. This

plot is again made for the two-bum extremal in Figure 7 and a one-bum constructed from

it in Figure 8. These figures all show similar results, namely that V(t) is not negative

definite, but positive semidef'mite. The situation has been repeated, namely that the

normality condition has been violated and the conjugate point condition cannot be

checked. Therefore, none of the extremal solutions with fixed final time given in this

report satisfy the sufficient conditions for a minimizing solution•
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Eiaenvalues of V
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Figure 6: Plot of Eigenvalues for One-Burn Extremal.
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Figure 7: Plot of Eigenvalues of V(t) for Two-Burn Extremal.
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" Eigenvalues of V I--_--_23
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Figure 8: Plot of Eigenvalues of V(t) for Last Burn of Two-Burn Extremal.

lll.2. NUMERICAL RESULTS FOR FREE FINAL TIME

When the final time is unspecified, a new condition, the transversality condition,

must be satisfied by the nominal solution. This condition is expressed in Eq. [60a]

(d. )a(x,u,v,t)l,., ' - --_-+L =0 (60a)
t_tf

where m = _(x,t) + v'rv(x,t) (60b)

dO ,_ a_t,. (6oc)
d--_-= --_-+ _x

This slightly complicates the process of checking the sufficient conditions. The

sweepback method can be used with some additions. Three differential equations and

thus three boundary conditions must be added to those for P, S, and V.

;h =-(At - PB)m, (61)
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fi = STBm, dv

£_ = mTBm,

t_tf

These additions are used to form P, S, and V matrices as follows:

= P - mm__..__T
(64)

g = S- mn----_r
a (65)

V= V- nn__[
a (66)

The equations for dv

respectively, giving

and _. change by substituting P,

v-'(to)[Sv-g,(t,)SX(to)]

g, and V for P, S, and V

(67)

o_(t)= P(t)Sx(t)+ g(t)dv C68)

Note again, however that 6W has been assumed zero. Now, the sufficient conditions

based on the second variation with flee final time are:

convexity condition: Hoo (t) > 0 for t, _<t _<t t (69)

normality condition:
V-_(t) exists fort, < t < t/

a-_(t) exists for to _<t < t/

(70a)

(71b)

conjugate point condition: P(t)- g(t)V-t(t)sT(t) finite for t, _<t < tt (72)
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Theeigenvaluesof V areplottedin Figure9. Figures10-12plot theelementsof

theconjugatepointconditionmatrix. Figure13is aplotof a(t). Figure9 showsthat V

ispositive definite in the required interval. Figure 13 shows that _t) is negative definite

in the required interval. Since the normality condition requires that the inv_erse of V and

_t) exists in the interval, this solution is normal. Figures 10-12 show that the conjugate

point condition is satisfied. The elements are bounded in the required interval and grow

asymptotically at the final time. Therefore, this solution satisfies the sufficient conditions

for minimizing the cost functional with free transfer time.

Figure 9
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Numericalremitswerealsoobtainedfor a onebumcaseusingthesamefreefinal

timesolution.Figs.14& 15showthatthenormalityconditionis indeedmetin that,

respectively,tz(t) exists and V -z exists
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Figure 14: Plot of o_(t) for One Burn Extremal.
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As seen above in Figs. 10-12, the conjugate point condition is met for the two

burn ease in that the elements of the matrix required for that condition are finite; thus the

conditions can be met similarly for the one bum case for the same solution.

IV. NEIGHBORING OPTIMAL FEEDBACK GUIDANCE

Conveniently, construction of a neighboring optimal feedback guidance law uses

the same information as that required to check the second variation of the cost functional.

As a result, much of the derivation required of guidance law has been stated already. The

remaining discussion will describe how to form the feedback control law and adjust the

characteristics of the bang-bang control in a feedback law.

The control, _i0, for the fixed final time problem can be found using

+

= -Ho_[f_(P - SV-'Sr)](Sx

(73)

Note that this continuous feedback law has been constructed by estimating dv at each

instant of time. The feedback law depends on P, S, and V as functions of time. A

particular advantage of the sweepback method is the solution of P(to), S(to), and V(to),

allowing the guidance law to store these values and propagate them forward to the current

time to calculate the current feedback gain. Propagation of the feedback gain may be by

integration or more practically by interpolation between stored values. Use of this control

should keep the trajectory on a neighboring optimal solution and deliver the spacecraft to

the required orbit in the specified transfer time.

If the transfer time is not fixed, and was chosen optimally for the nominal

trajectory. Then the formulation for free final time as stated earlier can be used to obtain

the feedback guidance law
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-- -I T-- f_Sdv]S0(t)- -Hoo[(fuP)_x +

= --H_[fT(-sV-'sr)]d_x

(74)

and the change in the final time, dt/, is:

  ll,x (75)

Evaluating dtl determines when the thrust will be turned off to complete the transfer.

The block diagram for the feedback controller needed for neighboring optimal

feedback guidance is shown in Figure 16.

Nominal +_Acontrol

t

_ Ot}servable. Physicalquar_ities li system= f(x,u,t

u(t)

Figure 16: Diagram of Neighboring Optimal Feedback Controller

Implementation. 13

In Figure 16 Al(t) is the feedback gain for the 80 equation.

To determine when the new switching times should be, a variation of the

switching function must be taken

dlt r = Hr_dx + Hr_d,_ + HrodO = 0 (76)
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Therefore, the equation to find the change in the switching time is

dt = -HrxSx- Hr_,S_"- HroSO = B(Jcrrx- _r_/q')/BT (77)

_r_x --iTS_

--2_:r)l

In order to implement changes in the switching times it will be necessary to predict future

errors in the state. The state transition matrix should be sufficient in this matter. Such

predictions will provide the foresight to make switching times earlier or later when

necessary.

V. SIMULATION RESULTS FOR THE FREE FINAL TIME SOLUTION USING THE ONE BURN

CASE

The controller was implemented by simulating the one burn case for the free final

time solution. The simulation corresponds to a forward integration of the states, costates,

and the assumed variables, P, S, V, m, n, and cx from the initial time to the final time.

A comparison of the nominal and actual trajectories is shown in Fig. 17. (The

actual trajectory being that generated from the simulation results.) Fig. 18 shows a plot

of the actual and approximated errors in the trajectories when each state is perturbed from

a value of 10 -4 (actual refers to the difference between the nominal and actual trajectories

and approximated refers to the integrated error). It is seen that the actual and

approximated errors are concurrent with one another; however, they do not approach zero

which implies that stability in this case is not guaranteed. Figure 19 shows the

approximated error during the backward integration in which the error at the f'mal time as

set to a small number. This plot seems to show a stable response. In order to examine

response on a more general basis, the 2-norm of the system transition matrix was plotted

in Fig. 20. Obviously, if the 2-norm went to zero, response to initial conditions would be

stable. By this plot, it would seem that in general the response will not be decreasing.
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Nominal and Actual Trajectories
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Figure 17: Plot of the Nominal and Actual Trajectories.
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Approximated Errors from

Backward Integration
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Figure 19: Plot of the Approximated Errors for Backward Integration.
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VI. PATCHED TRANSFER METHOD PROGRESS

Recent work in this research project has been directed toward developing a

numerical computation scheme that performs well for a wide range of acceleration levels
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and target parameters. Current effort is in assembling a method referred to here as the

Patched Method.

The Patched Method is to consist of two phases: a transfer orbit optimization

phase and a orbit transfer solver phase. The transfer orbit optimization phase is not so

much concerned with what values of the Lagrange multipliers are required to take the

craft from orbit A to orbit B as it is with how much time or fuel is required. The orbit

transfer solver phase, however, is more concerned with obtaining an accurate

representation of the transfer and is equally concerned with the values of the Lagrange

multipliers as it is with the transfer time. Finally, it also seems reasonable to desire a

method that will search for the optimal solution satisfying the target parameters but will

also, if that fails, be able to return a sub-optimal solution satisfying the target parameters.

In other words, it would be better to calculate a sub-optimal solution than obtain no

solution at all.

Obviously, the key algorithm is one that can quickly determine the minimum

transfer time (and fuel requirement) between two given orbits in a single bum. One

approach that may give satisfactory results is an application of multivariate interpolation.

Interpolation requires calculation and storage of data ahead of time. Therefore, the first

question is what needs to be stored? To completely specify a problem the following

twelve (12) values are required: semimajor axis a(to) and a(tf), eccentricity e(to) and e(tf),

true anomaly V(to) and v(tf), argument of perigee tO(to) and O_tf), mass m(to), thrust T,

specific impulse lsp, and transfer time, tf. To specify the problem's solution storage of

the Lagrange multipliers _._(to), 2y(to), ;t.,,(to), 2v(to),£,,_(to)is required.

The first of the nondimensionalization equations, Eqn. [23], says that a(to) can be

set to unity (a(to)=l) for any orbit transfer problem. A simple choice of coordinate axis,

aligning it with perigee, will set the initial argument of perigee to be set to zero degrees,

which also works for any orbit transfer problem. Neither eccentricity nor true anomaly

have such favorable scaling qualities. Additionally, now that the initial values have been

scaled, the f'mal values zn,_; _. The influence of specific impulse can be removed by
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assumingaconstantmass.Themassmaybecorrectedattheendof thebum,sothat

calculationof thefollowingbumis moreaccurate.Assumingconstantmassalso

removestheneedto store),,_.

The influence of the thrust level may be removed by a somewhat restrictive

assumption, (&/p)2 << 1, where & is distance between the actual position of the craft and

a point on a reference orbit with current radius p. This assumption is consistent both with

low thrust levels, which stay close to a reference orbit for several revolutions, and

medium thrust levels, which may only stay close to a reference orbit for a few

revolutions. The advantage is that the assumption linearizes the dynamics and allows the

solution to be written as

Sr(t)'] . ,Far(to)l,
av(t)J=a'tt't°'LaV(to)J"'J, r

(78)

Where O(t,to) is the state transition matrix for the homogeneous solution, ff the initial

conditions are set to zero, then the solution is linear with respect to the thrust. Now, one

solution can easily be scaled for any thrust level; however, the resulting solution must

satisfy the assumption. The orbital elements can then be determined using a Jacobian

matrix, as shown in Eq. [79] and easily obtained by taking partial derivatives of equations

used to convert Cartesian coordinates to orbital elements.

Se = J(ao,eo, Vo,_o) _'_Sv

&o

The number of parameters required to specify a given transfer are reduced to

seven (7): t_a(tf), e(to), 6e(tf), _t(tf), v(to),i _v(tf), and tf; the transfer time stored with this

data is the minimum time required for the transfer. To store the solution, it is still

required to know all the Lagrange multipliers.
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Beforeproceedingmuchfurtherwith thisdiscussionafewwordsshouldbesaid

aboutmultivariateinterpolation.It isassumedthereaderis familiarwithunivariate,or

singlevariable,interpolationinwhichthereis onlyoneindependentvariableandone

scalarfunctionof thatvariable,thoughanynumberof suchdependentvariablesis

allowed.Bivariateinterpolationis theninterpolationinvolvingtwoindependentvariables

andatleastonefunctionof thesevariables.Bivariateinterpolation,andthisapplies

equallywell to multivariateinterpolation,is mosteasilyimplementedwhenthevaluesfor

independentvariablesareevenlyspacedin agridTM.

However, in the case of orbital transfer it would be quite difficult to obtain data

with the orbital elements of the target orbit evenly spaced because this would require an

iterative solver for each data point. If that process were easy, there would be no need for

this approach. On the other hand, it is relatively easy to obtain a grid with the Lagrange

multipliers, orbital elements of the initial orbit, and the transfer time evenly spaced. The

equations of motion can then be integrated and the orbital elements of the destination

orbit are known. The difficulty associated with the unevenly spaced grid is evident when

one has values for the elements of the target orbit and wants to obtain the values of the

Lagrange multipliers and the required transfer time. Currently, both types of grids are

being considered.

The spacing of the grid is another issue altogether. The spacing of the grid, or its

density, will determine the accuracy of the estimated minimum transfer time. Since

speed of the algorithm and storage space required for the software are always important,

the grid will need a somewhat wide spacing. There are 7 values to store for each point in

the grid; whichever of the other 4 variables are evenly spaced, it is easy to determine their

values though proper indexing of the grid points. If each variable is allowed n different

values and 8 bytes are used to store each number in the computer, then the grid will

occupy 56n 7 bytes of memory. For the grid to need ur_ ._rone megabyte of space, then

n--4 is required. For n=5, the grid would occupy just over 4 megabytes of space. More
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thanlikely, differentspacingsof eachvariablewouldbemostefficientbutwill thiswill

notchangethefactthatthegridcannotbedense.

Thisinterpolationwill mostsurelyproduceaquick,thoughroughestimateof the

transfertimebetweentwochosenorbits.Thenextphaseof themethodis to obtain

accuratesolutionsfor thetransfersbetweentheseorbits.Estimatesfor theLagrange

multiplierscanbealsoobtainedthroughtheinterpolation.Thesecanthenbeusedasan

initial guessfor anumericalsolver.And,if thatfails,ahomotopyalgorithmcanbe

initiatedfromanearbygrid datapointsincethatdatapointis alreadyanaccurate

solution.

VII. CONCLUSIONS

Concerning the calculation of optimal transfers, the current direction has been

elaborated upon, which is to test numerical methods within the framework of the Patched

Method. Some work from previous reports and borrowing techniques from the literature

will be incorporated along with the discussed methods. Results from this work are

forthcoming.

A few conclusions, which lend themselves to study in current research work, can

be made from the analyses presented here. If there are no algorithm mistakes, then it can

be concluded that the extremal solutions examined may not be locally optimal solutions

for fixed transfer time. However, some considerations necessary for an accurate

examination of the second variation may have been overlooked. Ongoing research work

is in examining why these conditions are not met.

It was found that the sufficient conditions were satisfied for the free final time

problem. Software has been developed in order to simulate neighboring optimal

feedback guidance. Currently, this software is not producing stable solutions. The issue

of stability of the response must be investigated further and is an area of current research

endeavors.
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